8 research outputs found

    Federated Deep Learning for Cyber Security in the Internet of Things: Concepts, Applications, and Experimental Analysis

    Get PDF
    In this article, we present a comprehensive study with an experimental analysis of federated deep learning approaches for cyber security in the Internet of Things (IoT) applications. Specifically, we first provide a review of the federated learning-based security and privacy systems for several types of IoT applications, including, Industrial IoT, Edge Computing, Internet of Drones, Internet of Healthcare Things, Internet of Vehicles, etc. Second, the use of federated learning with blockchain and malware/intrusion detection systems for IoT applications is discussed. Then, we review the vulnerabilities in federated learning-based security and privacy systems. Finally, we provide an experimental analysis of federated deep learning with three deep learning approaches, namely, Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), and Deep Neural Network (DNN). For each deep learning model, we study the performance of centralized and federated learning under three new real IoT traffic datasets, namely, the Bot-IoT dataset, the MQTTset dataset, and the TON_IoT dataset. The goal of this article is to provide important information on federated deep learning approaches with emerging technologies for cyber security. In addition, it demonstrates that federated deep learning approaches outperform the classic/centralized versions of machine learning (non-federated learning) in assuring the privacy of IoT device data and provide the higher accuracy in detecting attacks

    Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications for Centralized and Federated Learning

    Get PDF
    In this paper, we propose a new comprehensive realistic cyber security dataset of IoT and IIoT applications, called Edge-IIoTset, which can be used by machine learning-based intrusion detection systems in two different modes, namely, centralized and federated learning. Specifically, the dataset has been generated using a purpose-built IoT/IIoT testbed with a large representative set of devices, sensors, protocols and cloud/edge configurations. The IoT data are generated from various IoT devices (more than 10 types) such as Low-cost digital sensors for sensing temperature and humidity, Ultrasonic sensor, Water level detection sensor, pH Sensor Meter, Soil Moisture sensor, Heart Rate Sensor, Flame Sensor, etc.). Furthermore, we identify and analyze fourteen attacks related to IoT and IIoT connectivity protocols, which are categorized into five threats, including, DoS/DDoS attacks, Information gathering, Man in the middle attacks, Injection attacks, and Malware attacks. In addition, we extract features obtained from different sources, including alerts, system resources, logs, network traffic, and propose new 61 features with high correlations from 1176 found features. After processing and analyzing the proposed realistic cyber security dataset, we provide a primary exploratory data analysis and evaluate the performance of machine learning approaches (i.e., traditional machine learning as well as deep learning) in both centralized and federated learning modes. The Edge-IIoTset dataset can be publicly accessed from http://ieee-dataport.org/8939

    Edge Learning for 6G-enabled Internet of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses

    Full text link
    The ongoing deployment of the fifth generation (5G) wireless networks constantly reveals limitations concerning its original concept as a key driver of Internet of Everything (IoE) applications. These 5G challenges are behind worldwide efforts to enable future networks, such as sixth generation (6G) networks, to efficiently support sophisticated applications ranging from autonomous driving capabilities to the Metaverse. Edge learning is a new and powerful approach to training models across distributed clients while protecting the privacy of their data. This approach is expected to be embedded within future network infrastructures, including 6G, to solve challenging problems such as resource management and behavior prediction. This survey article provides a holistic review of the most recent research focused on edge learning vulnerabilities and defenses for 6G-enabled IoT. We summarize the existing surveys on machine learning for 6G IoT security and machine learning-associated threats in three different learning modes: centralized, federated, and distributed. Then, we provide an overview of enabling emerging technologies for 6G IoT intelligence. Moreover, we provide a holistic survey of existing research on attacks against machine learning and classify threat models into eight categories, including backdoor attacks, adversarial examples, combined attacks, poisoning attacks, Sybil attacks, byzantine attacks, inference attacks, and dropping attacks. In addition, we provide a comprehensive and detailed taxonomy and a side-by-side comparison of the state-of-the-art defense methods against edge learning vulnerabilities. Finally, as new attacks and defense technologies are realized, new research and future overall prospects for 6G-enabled IoT are discussed

    Digital Agriculture Security: Aspects, Threats, Mitigation Strategies, and Future Trends

    No full text
    The file attached to this record is the author's final peer reviewed version.Agricultural advancement over time has been an essential component of human civilization's evolution. The rapid progress of emerging technologies is driving digital empowerment in nearly every industry, including the agricultural sector. Regardless of the benefits derived from this evolution, there are several security threats involved, which can have a significant impact on the agricultural domain. This paper provides a review of digital agriculture from the security perspective. First, we provide a clear introduction to the digital agriculture ecosystem from a technological standpoint. Next, we highlight the key aspects of digital agriculture security to get the reader on board. Then, we focus on the current and potential threats facing these particular systems, as well as current and/or possible mitigation strategies to address these threats. Finally, we discuss future research directions and open challenges

    Edge-IIoTset: A new comprehensive realistic cyber security dataset of IoT and IIoT applications for centralized and federated learning

    Get PDF
    In this paper, we propose a new comprehensive realistic cyber security dataset of IoT and IIoT applications, called Edge-IIoTset, which can be used by machine learning-based intrusion detection systems in two different modes, namely, centralized and federated learning. Specifically, the dataset has been generated using a purpose-built IoT/IIoT testbed with a large representative set of devices, sensors, protocols and cloud/edge configurations. The IoT data are generated from various IoT devices (more than 10 types) such as Low-cost digital sensors for sensing temperature and humidity, Ultrasonic sensor, Water level detection sensor, pH Sensor Meter, Soil Moisture sensor, Heart Rate Sensor, Flame Sensor, etc.). Furthermore, we identify and analyze fourteen attacks related to IoT and IIoT connectivity protocols, which are categorized into five threats, including, DoS/DDoS attacks, Information gathering, Man in the middle attacks, Injection attacks, and Malware attacks. In addition, we extract features obtained from different sources, including alerts, system resources, logs, network traffic, and propose new 61 features with high correlations from 1176 found features. After processing and analyzing the proposed realistic cyber security dataset, we provide a primary exploratory data analysis and evaluate the performance of machine learning approaches (i.e., traditional machine learning as well as deep learning) in both centralized and federated learning modes. The Edge-IIoTset dataset can be publicly accessed from [1]

    FELIDS: Federated learning-based intrusion detection system for agricultural Internet of Things

    No full text
    In this paper, we propose a federated learning-based intrusion detection system, named FELIDS, for securing agricultural-IoT infrastructures. Specifically, the FELIDS system protects data privacy through local learning, where devices benefit from the knowledge of their peers by sharing only updates from their model with an aggregation server that produces an improved detection model. In order to prevent Agricultural IoTs attacks, the FELIDS system employs three deep learning classifiers, namely, deep neural networks, convolutional neural networks, and recurrent neural networks. We study the performance of the proposed IDS on three different sources, including, CSE-CIC-IDS2018, MQTTset, and InSDN. The results demonstrate that the FELIDS system outperforms the classic/centralized versions of machine learning (non-federated learning) in protecting the privacy of IoT devices data and achieves the highest accuracy in detecting attacks

    FELIDS: Federated Learning-based Intrusion Detection System for Agricultural Internet of Things

    No full text
    The file attached to this record is the author's final peer reviewed version.In this paper, we propose a federated learning-based intrusion detection system, named FELIDS, for securing agricultural-IoT infrastructures. Specifically, the FELIDS system protects data privacy through local learning, where devices benefit from the knowledge of their peers by sharing only updates from their model with an aggregation server that produces an improved detection model. In order to prevent Agricultural IoTs attacks, the FELIDS system employs three deep learning classifiers, namely, deep neural networks, convolutional neural networks, and recurrent neural networks. We study the performance of the proposed IDS on three different sources, including, CSE-CIC-IDS2018, MQTTset, and InSDN. The results demonstrate that the FELIDS system outperforms the classic/centralized versions of machine learning (non-federated learning) in protecting the privacy of IoT devices data and achieves the highest accuracy in detecting attacks
    corecore